Options
Chromatically unique multibridge graphs
Citation
Dong, F. M., Teo, K. L., Little, C. H. C., Hendy, M., & Koh, K. M. (2004). Chromatically unique multibridge graphs. Electronic Journal of Combinatorics, 11(1), Article R12. http://www.combinatorics.org/ojs/index.php/eljc/article/view/v11i1r12/pdf
Abstract
Let (a1, a2, · · · , ak) denote the graph obtained by connecting two distinct vertices with k independent paths of lengths a1, a2, · · · , ak respectively. Assume that 2 ≤ a1 ≤ a2 ≤ · · · ≤ ak. We prove that the graph θ
(a1, a2, · · · , ak) is chromatically unique if ak < a1 +a2, and find examples showing that θ
(a1, a2, · · · , ak) may not be chromatically unique if ak = a1 + a2.
Date Issued
2004
Publisher
Electronic Journal of Combinatorics
Journal
Electronic Journal of Combinatorics