Options
Exploratory assessment of SUDS feasibility in Nhieu Loc-Thi Nghe Basin, Ho Chi Minh City, Vietnam
Citation
Ho, H. L., Babel, M. S., Weesakul, S., Irvine, K. N., & Pham, M. D. (2015). Exploratory assessment of SUDS feasibility in Nhieu Loc-Thi Nghe Basin, Ho Chi Minh City, Vietnam. British Journal of Environment and Climate Change, 5(2), 91-103. http://doi.org/10.9734/BJECC/2015/11534
Author
Ho, Huu Loc
•
Babel, Mukand Singh
•
Weesakul, Sutat
•
Irvine, Kim N.
•
Pham, Minh Duyen
Abstract
Aims: In recent decades, Ho Chi Minh City, Vietnam, frequently has been affected by local floods and inundation from heavy rainfall. Conventional flood mitigation measures such as building flood gates and upgrading sewerage systems have been implemented but problems persist. The objective of this research is to assess another approach for flood control measures, namely Sustainable Urban Drainage Systems (SUDS), with application to the Nhieu Loc - Thi Nghe Basin, located in the central part of Ho Chi Minh City. Methodology: A combination of the Stormwater Management Model (PCSWMM) and interviews with 140 households was used to assess the efficacy and acceptability of four of the most popular SUDS: Rainwater harvesting, green roofs, urban green space and pervious pavement. Thirteen SUDS and urban build-out scenarios were simulated under 6 design storm conditions.
Results: PCSWMM results showed that inundation from intense rainfall could be reduced with proper land-use control, specifically by maintaining imperviousness at 65% or less of the surface area. With respect to SUDS performance, green roofs were best at reducing peak runoff (22% reduction), followed by pervious pavement, urban green space, and rainwater harvesting systems. Regarding environmental improvements, as represented by reduction in total suspended solids load, urban green space was best with 20% of the solids load removed compared to the base case scenario, followed by green roofs, pervious pavement, and rainwater harvesting. The household interviews revealed the majority of people preferred pervious pavement to the other SUDS options and the least preferred option was green roof technology.
Conclusion: Considering the combination of water quantity and water quality controls, it seems that green roof technology was the best performer for this area of Ho Chi Minh City, followed by urban green space, pervious pavement and rainwater harvesting. However, green roof technology also was the least favored option for the public and stakeholder acceptance will impact SUDS implementation.
Results: PCSWMM results showed that inundation from intense rainfall could be reduced with proper land-use control, specifically by maintaining imperviousness at 65% or less of the surface area. With respect to SUDS performance, green roofs were best at reducing peak runoff (22% reduction), followed by pervious pavement, urban green space, and rainwater harvesting systems. Regarding environmental improvements, as represented by reduction in total suspended solids load, urban green space was best with 20% of the solids load removed compared to the base case scenario, followed by green roofs, pervious pavement, and rainwater harvesting. The household interviews revealed the majority of people preferred pervious pavement to the other SUDS options and the least preferred option was green roof technology.
Conclusion: Considering the combination of water quantity and water quality controls, it seems that green roof technology was the best performer for this area of Ho Chi Minh City, followed by urban green space, pervious pavement and rainwater harvesting. However, green roof technology also was the least favored option for the public and stakeholder acceptance will impact SUDS implementation.
Publisher
SCIENCEDOMAIN international
Journal
British Journal of Environment and Climate Change
DOI
10.9734/BJECC/2015/11534