Repository logo
  • Log In
Repository logo
  • Log In
  1. Home
  2. NIE Publications & Research Output
  3. Electronic Academic Papers
  4. Journal Articles
  5. Gene cloning and mRNA expression of glutamate dehydrogenase in the liver, brain, and intestine of the swamp eel, Monopterus albus (Zuiew), exposed to freshwater, terrestrial conditions, environmental ammonia, or salinity stress
 
  • Details
Options

Gene cloning and mRNA expression of glutamate dehydrogenase in the liver, brain, and intestine of the swamp eel, Monopterus albus (Zuiew), exposed to freshwater, terrestrial conditions, environmental ammonia, or salinity stress

URI
https://hdl.handle.net/10497/17112
Loading...
Thumbnail Image
Type
Article
Files
 FP-2-100.pdf (1.68 MB)
Citation
Tok, C. Y., Chew, S. F., & Ip, Y. K. (2011). Gene cloning and mRNA expression of glutamate dehydrogenase in the liver, brain, and intestine of the swamp eel, Monopterus albus (Zuiew), exposed to freshwater, terrestrial conditions, environmental ammonia, or salinity stress. Frontiers in Physiology, 2, Article 100. https://doi.org/10.3389/fphys.2011.00100
Author
Tok, Chia Yee
•
Chew, Shit Fun 
•
Ip, Yuen Kwong
Abstract
The swamp eel, Monopterus albus, is an obligatory air-breathing teleost which can undergo long period of emersion, has high environmental and tissue ammonia tolerance, and can survive in brackish water. We obtained a cDNA sequence of glutamate dehydrogenase (gdh), which consisted of a 133-bp 5 UTR, a complete coding sequence region spanning 1629 bp and a 3 UTR of approximately 717 bp, from the liver, intestine, and brain of M. albus. The translated Gdh amino acid sequence had 542 residues, and it formed a monophyletic clade with Bostrychus sinensis Gdh1a,Tetraodon nigroviridis Gdh1a, Chaenocephalus aceratus Gdh1a, Salmo salar Gdh1a1 and Gdh1a2, and O. mykiss Gdh1a. One day of exposure to terrestrial conditions or 75 mmol l−1 NH4Cl, but not to water at salinity 20, resulted in a significant increase in mRNA expression of gdh1a and Gdh amination activity in the liver of M. albus. However, exposure to brackish water, but not to terrestrial conditions or 75 mmol l−1 NH4Cl, led to a significant increase in the mRNA expression of gdh1a and Gdh amination activity in the intestine. By contrast, all the three experimental conditions had no significant effects on the mRNA expression of gdh1a in the brain of M. albus, despite a significant decrease in the Gdh amination activity in the brain of fish exposed to 75 mmol l−1 NH4Cl for 6 days. Our results indicate for the first time that the mRNA expression of gdh1a was differentially up-regulated in the liver and intestine of M. albus in response to ammonia toxicity and salinity stress, respectively. The increases in mRNA expression of gdh1a and Gdh amination activity would probably lead to an increase in glutamate production in support of increased glutamine synthesis for the purpose of ammonia detoxification or cell volume regulation under these two different environmental conditions.
Keywords
  • Ammonia

  • Glutamate

  • Glutamate dehydrogena...

  • Monopterus albus

  • Nitrogen metabolism

  • Osmoregulation

  • mRNA expression

  • Swamp eel

Date Issued
2011
Publisher
Frontiers
Journal
Frontiers in Physiology
DOI
10.3389/fphys.2011.00100
  • Contact US
  • Terms of Use
  • Privacy Policy

NTU Reg No: 200604393R. Copyright National Institute of Education, Nanyang Technological University (NIE NTU), Singapore

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science