Options
Chew, Shit Fun
Preferred name
Chew, Shit Fun
Email
sfun.chew@nie.edu.sg
Department
Natural Sciences & Science Education (NSSE)
ORCID
40 results
Now showing 1 - 10 of 40
- PublicationOpen AccessFunctional roles of Na+/K+-ATPase in active ammonia excretion and seawater acclimation in the giant mudskipper, Periophthalmodon schlosseri(Frontiers, 2014)
; ;Hiong, Kum Chew ;Lam, Sock Peng ;Ong, Siew W. ;Wee, Wei L. ;Wong, Wai PengIp, Yuen KwongThe giant mudskipper, Periophthalmodon schlosseri, is an amphibious fish that builds burrows in the mudflats. It can actively excrete ammonia through its gills, and tolerate high environmental ammonia. This study aimed to examine the effects of seawater (salinity 30; SW) acclimation and/or environmental ammonia exposure on the kinetic properties of Na+/K+-ATPase (Nka) from, and mRNA expression and protein abundance of nka/Nka α–subunit isoforms in, the gills of P. schlosseri pre-acclimated to slightly brackish water (salinity 3; SBW). Our results revealed that the Nka from the gills of P. schlosseri pre-acclimated to SBW for 2 weeks had substantially higher affinity to (or lower Km for) K+ than NH+ 4 , and its affinity to NH+ 4 decreased significantly after 6-days exposure to 75 mmol l−1 NH4Cl in SBW. Hence, Nka transported K+ selectively to maintain intracellular K+ homeostasis, instead of transporting NH+ 4 from the blood into ionocytes during active NH+4 excretion as previously suggested. Two nkaα isoforms, nkaα1 and nkaα3, were cloned and sequenced from the gills of P. schlosseri. Their deduced amino acid sequences had K+ binding sites identical to that of Nkaα1c from Anabas testudineus, indicating that they could effectively differentiate K+ from NH+ 4 . Six days of exposure to 75 mmol l−1 NH4Cl in SBW, or to SW with or without 50 mmol l−1 NH4Cl led to significant increases in Nka activities in the gills of P. schlosseri. However, a significant increase in the comprehensive Nkaα protein abundance was observed only in the gills of fish exposed to 50 mmol l−1 NH4Cl in SW. Hence, post-translational modification could be an important activity modulator of branchial Nka in P. schlosseri. The fast modulation of Nka activity and concurrent expressions of two branchial nkaα isoforms could in part contribute to the ability of P. schlosseri to survive abrupt transfer between SBWand SW or abrupt exposure to ammonia.WOS© Citations 13Scopus© Citations 21 383 233 - PublicationOpen AccessUsing glutamine synthetase 1 to evaluate the symbionts' potential of ammonia assimilation and their responses to illumination in five organs of the giant clam, Tridacna squamosa(Elsevier, 2021)
;Teh, Leanne S. X. ;Poo, Jeslyn Shi Ting ;Boo, Mel Veen; Ip, Yuen KwongNitrogen-deficient symbiotic dinoflagellates (zooxanthellae) living inside the fluted giant clam, Tridacna squamosa, need to obtain nitrogen from the host. Glutamine synthetase 1 (GS1) is a cytosolic enzyme that assimilates ammonia into glutamine. We determined the transcript levels of zooxanthellal GS1 (Zoox-GS1), which represented comprehensively GS1 transcripts of Symbiodinium, Cladocopium and Durusdinium, in five organs of T. squamosa. The outer mantle had significantly higher transcript level of Zoox-GS1 than the inner mantle, foot muscle, hepatopancreas and ctenidium, but the transcript ratios of Zoox-GS1 to zooxanthellal form II ribulose-1,5-bisphosphate carboxylase/oxygenase (Zoox-rbcII), which represented the potential of ammonia assimilation relative to the phototrophic potential, were comparable among these five organs. Based on transcript ratios of Zoox-GS1 to zooxanthellal Urease (Zoox-URE), the outer mantle had the highest potential of urea degradation relative to ammonia assimilation among the five organs, probably because urea degradation could furnish CO2 and NH3 for photosynthesis and amino acid synthesis, respectively, in the symbionts therein. The protein abundance of Zoox-GS1 was upregulated in the outer mantle and the inner mantle during illumination. Zoox-GS1 could catalyze light-enhanced glutamine formation using ammonia absorbed from the host or ammonia released through urea degradation in the cytoplasm. The glutamine produced could be used to synthesize other nitrogenous compounds, including amino acids in the cytoplasm or in the plastid of the dinoflagellates. Some of the amino acids synthesized by the symbionts in the inner mantle and foot muscle could be donated to the host to support shell organic matrix formation and muscle production, respectively.WOS© Citations 8Scopus© Citations 8 295 147 - PublicationOpen AccessLight exposure enhances urea absorption in the fluted giant clam, Tridacna squamosa, and up-regulates the protein abundance of a light-dependent urea active transporter, DUR3-like, in its ctenidium(The Company of Biologists, 2018)
;Chan, Christabel Y. L. ;Hiong, Kum Chew ;Boo, Mel Veen ;Choo, Celine Yen Ling ;Wong, Wai Peng; Ip, Yuen KwongGiant clams live in nutrient-poor reef waters of the Indo-Pacific and rely on symbiotic dinoflagellates (Symbiodinium spp., also known as zooxanthellae) for nutrients. As the symbionts are nitrogen deficient, the host clam has to absorb exogenous nitrogen and supply it to them. This study aimed to demonstrate light-enhanced urea absorption in the fluted giant clam, Tridacna squamosa, and to clone and characterize the urea active transporter DUR3-like from its ctenidium (gill). The results indicate that T. squamosa absorbs exogenous urea, and the rate of urea uptake in the light was significantly higher than that in darkness. The DUR3-like coding sequence obtained from its ctenidium comprised 2346 bp, encoding a protein of 782 amino acids and 87.0 kDa. DUR3-like was expressed strongly in the ctenidium, outer mantle and kidney. Twelve hours of exposure to light had no significant effect on the transcript level of ctenidial DUR3-like. However, between 3 and 12 h of light exposure, DUR3-like protein abundance increased progressively in the ctenidium, and became significantly greater than that in the control at 12 h. DUR3-like had an apical localization in the epithelia of the ctenidial filaments and tertiary water channels. Taken together, these results indicate that DUR3-like might participate in light-enhanced urea absorption in the ctenidium of T. squamosa. When made available to the symbiotic zooxanthellae that are known to possess urease, the absorbed urea can be metabolized to NH3 and CO2 to support amino acid synthesis and photosynthesis, respectively, during insolation.WOS© Citations 30Scopus© Citations 32 279 256 - PublicationOpen AccessBasolateral Na⁺/Ca²⁺ exchanger 1 and Na⁺/K⁺-ATPase, which display light-1 enhanced gene and protein expression levels, could be involved in the absorption of exogenous Ca²⁺ through the ctenidium of the giant clam, Tridacna squamosaGiant clams perform light-enhanced shell formation (calcification) and therefore need to increase the uptake of exogenous Ca2+ during illumination. The ctenidium of the fluted giant clam, Tridacna squamosa, is involved in light-enhanced Ca2+ uptake. It expresses the pore-forming voltage-gated calcium channel (VGCC) subunit alpha 1 (CACNA1) in the apical membrane of the epithelial cells, and the protein expression level of CACNA1 is upregulated in the ctenidium during illumination. This study aimed to elucidate the mechanism involved in the transport of the absorbed Ca2+across the basolateral membrane of the ctenidial epithelial cells into the hemolymph. We obtained a homolog of Na+/Ca2+ exchanger 1 (NCX1-like) from the ctenidium of T. squamosa, which comprised 2418 bp, encoding a protein of 806 amino acids (88.9 kDa). NCX1-like had a basolateral localization in the epithelial cells of the ctenidial filaments and tertiary water channels. Illumination resulted in significant increases in the transcript and protein levels of NCX1-like/NCX1-like in the ctenidium. Hence, NCX1-like could operate in conjunction with VGCC to increase the transport of Ca2+ from the ambient seawater into the hemolymph during illumination. Illumination also resulted in the upregulation of the gene and protein expression levels of Na+/K+-ATPase (NKA) α-subunit (NKAα/NKAα) in the ctenidium of T. squamosa. As light-enhanced extrusion of Ca2+ into the hemolymph through NCX1-like would lead to a greater influx of extracellular Na+, the increased expression of the basolateral NKA was required to augment the capacity of intracellular Na+ homeostasis.
121 127 - PublicationOpen AccessCalcium absorption in the fluted giant clam, Tridacna squamosa, may involve a homolog of voltage-gated calcium channel subunit α1 (CACNA1) that has an apical localization and displays light-enhanced protein expression in the ctenidium(Springer, 2019)
;Cao-Pham, Anh H. ;Hiong, Kum Chew ;Boo, Mel Veen ;Choo, Celine Yen Ling ;Wong, Wai Peng; Ip, Yuen KwongIn light, giant clams can increase rates of shell formation and growth due to their symbiotic relationship with phototrophic zooxanthellae residing extracellularly in a tubular system. Light-enhanced shell formation necessitates increase in the uptake of Ca2+ from the ambient seawater and the supply of Ca2+ through the hemolymph to the extrapallial fluid, where calcification occurs. In this study, the complete coding cDNA sequence of a homolog of voltage-gated calcium channel subunit α1 (CACNA1), which is the pore-forming subunit of L-type voltage-gated calcium channels (VGCCs), was obtained from the ctenidium (gill) of the giant clam, Tridacna squamosa. It consisted of 6081 bp and encoded a 223 kDa polypeptide with 2027 amino acids, which was characterized as the α1D subunit of L-type VGCC. Immunofluorescence microscopy demonstrated that CACNA1 had an apical localization in the epithelial cells of filaments and tertiary water channels in the ctenidium of T. squamosa, indicating that it was well positioned to absorb exogenous Ca2+. Additionally, there was a significant increase in the protein abundance of CACNA1 in the ctenidium of individuals exposed to light for 12 h. With more pore-forming CACNA1, there could be an increase in the permeation of exogenous Ca2+ into the ctenidial epithelial cells through the apical membrane. Taken together, these results denote that VGCC could augment exogenous Ca2+ uptake through the ctenidium to support light-enhanced shell formation in T. squamosa. Furthermore, they support the proposition that light-enhanced phenomena in giant clams are attributable primarily to the direct responses of the host’s transporters/enzymes to light, in alignment with the symbionts’ phototrophic activity.WOS© Citations 12Scopus© Citations 14 137 190 - PublicationOpen AccessLight-enhanced expression of Carbonic Anhydrase 4-like supports shell formation in the fluted giant clam Tridacna squamosa(Elsevier, 2019)
; ;Koh, Clarissa Z. Y. ;Hiong, Kum Chew ;Choo, Celine Yen Ling ;Wong, Wai Peng ;Neo, Mei LinIp, Yuen KwongGiant clams represent symbiotic associations between a host clam and its extracellular zooxanthellae. They are able to grow in nutrient-deficient tropical marine environments and conduct light-enhanced shell formation (calcification) with the aid of photosynthates donated by the symbiotic zooxanthellae. In light, there is a high demand for inorganic carbon (Ci) to support photosynthesis in the symbionts and light-enhanced calcification in the host. In this study, we cloned and characterized a host Carbonic Anhydrase 4 homolog (CA4-like) from the whitish inner mantle of the giant clam Tridacna squamosa. The full cDNA coding sequence of CA4-like consisted of 1,002 bp, encoding for 334 amino acids of 38.5 kDa. The host CA4-like was phenogramically distinct from algal CAs. The transcript level of CA4-like in the inner mantle was ~3-fold higher than those in the colorful outer mantle and the ctenidium. In the inner mantle, CA4-like was immunolocalized in the apical membrane of the seawater-facing epithelial cells, but absent from the shell-facing epithelium. Hence, CA4-like was positioned to catalyze the conversion of HCO3 − to CO2 in the ambient seawater which would facilitate CO2 uptake. The absorbed CO2 could be converted back to HCO3 − by the cytoplasmic CA2-like. As the protein abundance of CA4-like increased in the inner mantle after 6 or 12 h of light exposure, there could be an augmentation of the total CA4-like activity to increase Ci uptake in light. It is plausible that the absorbed Ci was allocated preferentially for shell formation due to the close proximity of the seawater-facing epithelium to the shell-facing epithelium in the inner mantle that contains only few zooxanthellae.WOS© Citations 27Scopus© Citations 28 114 192 - PublicationMetadata onlySymbiotic dinoflagellates of the giant clam, tridacna squamosa, express ammonium transporter 2 at the plasma membrane and increase its expression levels during illuminationGiant clams harbor dinoflagellates generally of the three genera (Symbiodinium, Cladocopium, and Durusdinium) of phototrophic Symbiodiniaceae. Coccoid dinoflagellates (alias zooxanthellae) are found mainly inside zooxanthellal tubules located in the colorful outer mantle. The symbionts need to obtain carbon, nitrogen and phosphorus from the host for growth and metabolism. The host can absorb exogenous ammonia through the ctenidium and assimilate it into glutamine. Although the host does not normally excrete ammonia, its hemolymph contains only low concentrations of ammonia, indicating that the symbionts can absorb and recycle the ammonia produced metabolically by the host. In this study, we had obtained from the outer mantle of the giant clam, Tridacna squamosa, three major ammonium transporter 2 (AMT2) sequences, one each for Symbiodinium spp. (Symb-AMT2), Cladocopium spp. (Clad-AMT2), and Durusdinium spp. (Duru-AMT2), which comprised 1341 bp, 1308 bp, and 1296 bp, respectively. The respective deduced amino acid sequences contained 447 (~ 46.5 kDa), 436 (~ 45.5 kDa), and 432 (~ 45.0 kDa) residues. Phenogramic and sequence similarity analyses confirmed that these sequences were derived from dinoflagellates. Zooxanthellae-AMT2 (Zoox-AMT2), which represented comprehensively AMT2 of Symbiodinium spp., Cladocopium spp., and Durusdinium spp. was localized at the dinoflagellates’ plasma membranes, indicating that it could partake in the absorption of ammonia from the luminal fluid of the zooxanthellal tubules. Zoox-AMT2 expression was detected in the outer mantle, inner mantle, foot muscle, hepatopancreas and ctenidium of T. squamosa, indicating that the coccoid dinoflagellates residing in all five organs had the potential of ammonia absorption. The outer mantle had the highest transcript level of Zoox-AMT2, and illumination upregulated the protein abundance of Zoox-AMT2 therein. Therefore, it can be deduced that the coccoid dinoflagellates residing in the outer mantle could augment the potential of ammonia absorption in alignment with photosynthesis as the assimilation of ammonia required an increased supply of carbon chains.
WOS© Citations 3Scopus© Citations 5 141 - PublicationOpen AccessSymbiodiniaceae dinoflagellates express urease in three subcellular compartments and upregulate its expression levels in situ in three organs of a giant clam (Tridacna squamosa) during illumination(Wiley, 2020)
;Ip, Yuen Kwong ;Teng, Germaine Ching Yun ;Boo, Mel Veen ;Poo, Jeslyn Shi Ting ;Hiong, Kum Chew ;Kim, Hyoju ;Wong, Wai PengGiant clams harbor three genera of symbiotic dinoflagellates (Symbiodinium, Cladocopium, Durusdinium) as extracellular symbionts (zooxanthellae). While symbiotic dinoflagellates can synthesize amino acids to benefit the host, they are nitrogen‐deficient. Hence, the host must supply them with nitrogen including urea, which can be degraded to ammonia and carbon dioxide by urease (URE). Here, we report three complete coding cDNA sequences of URE, one for each genus of dinoflagellate, obtained from the colorful outer mantle of the giant clam, Tridacna squamosa. The outer mantle had higher transcript level of Tridacna squamosa zooxanthellae URE (TSZURE) than the whitish inner mantle, foot muscle, hepatopancreas and ctenidium. TSZURE was immunolocalized strongly and atypically in the plastid, moderately in the cytoplasm, and weakly in the cell wall and plasma membrane of symbiotic dinoflagellates. In the outer mantle, illumination upregulated the protein abundance of TSZURE, which could enhance urea degradation in photosynthesizing dinoflagellates. The urea‐nitrogen released could then augment syntheses of amino acids to be shared with the host for its general needs. Illumination also enhanced gene and protein expression levels of TSZURE/TSZURE in the inner mantle and foot muscle, which contain only small quantities of symbiotic dinoflagellate, have no iridocyte, and lack direct exposure to light. With low phototrophic potential, dinoflagellates in the inner mantle and foot muscle might need to absorb carbohydrates in order to assimilate the urea‐nitrogen into amino acids. Amino acids donated by dinoflagellates to the inner mantle and the foot muscle could be used especially for syntheses of organic matrix needed for light‐enhanced shell formation and muscle protein, respectively.WOS© Citations 8Scopus© Citations 9 109 164 - PublicationOpen AccessSodium-dependent phosphate transporter protein 1 is involved in the active uptake of inorganic phosphate in nephrocytes of the kidney and the translocation of Pi into the tubular epithelial cells in the outer mantle of the giant clam, Tridacna squamosa(Frontiers, 2021)
;Ip, Yuen Kwong ;Boo, Mel Veen ;Poo, Jeslyn Shi Ting ;Wong, Wai PengGiant clams display light-enhanced inorganic phosphate (Pi) absorption, but how the absorbed (Pi) is translocated to the symbiotic dinoflagellates living extracellularly in a tubular system is unknown. They can accumulate (Pi) in the kidney, but the transport mechanism remains enigmatic. This study aimed to elucidate the possible functions of sodium-dependent phosphate transporter protein 1-homolog (PiT1-like), which co-transport Na+ and H2PO4–, in these two processes. The complete cDNA coding sequence of PiT1-like, which comprised 1,665 bp and encoded 553 amino acids (59.3 kDa), was obtained from the fluted giant clam, Tridacna squamosa. In the kidney, PiT1-like was localized in the plasma membrane of nephrocytes, and could therefore absorb (Pi) from the hemolymph. As the gene and protein expression levels of PiT1-like were up-regulated in the kidney during illumination, PiT1-like could probably increase the removal of (Pi) from the hemolymph during light-enhanced (Pi) uptake. In the ctenidial epithelial cells, PiT1-like had a basolateral localization and its expression was also light-dependent. It might function in (Pi) sensing and the absorption of (Pi) from the hemolymph when (Pi) was limiting. In the outer mantle, PiT1-like was localized in the basolateral membrane of epithelial cells forming the tertiary tubules. It displayed light-enhanced expression levels, indicating that the host could increase the translocation of Pi from the hemolymph into the tubular epithelial cells and subsequently into the luminal fluid to support increased (Pi) metabolism in the photosynthesizing dinoflagellates. Taken together, the accumulation of (Pi) in the kidney of giant clams might be unrelated to limiting the availability of (Pi) to the symbionts to regulate their population.WOS© Citations 2Scopus© Citations 2 333 182 - PublicationOpen AccessGene cloning and mRNA expression of glutamate dehydrogenase in the liver, brain, and intestine of the swamp eel, Monopterus albus (Zuiew), exposed to freshwater, terrestrial conditions, environmental ammonia, or salinity stressThe swamp eel, Monopterus albus, is an obligatory air-breathing teleost which can undergo long period of emersion, has high environmental and tissue ammonia tolerance, and can survive in brackish water. We obtained a cDNA sequence of glutamate dehydrogenase (gdh), which consisted of a 133-bp 5 UTR, a complete coding sequence region spanning 1629 bp and a 3 UTR of approximately 717 bp, from the liver, intestine, and brain of M. albus. The translated Gdh amino acid sequence had 542 residues, and it formed a monophyletic clade with Bostrychus sinensis Gdh1a,Tetraodon nigroviridis Gdh1a, Chaenocephalus aceratus Gdh1a, Salmo salar Gdh1a1 and Gdh1a2, and O. mykiss Gdh1a. One day of exposure to terrestrial conditions or 75 mmol l−1 NH4Cl, but not to water at salinity 20, resulted in a significant increase in mRNA expression of gdh1a and Gdh amination activity in the liver of M. albus. However, exposure to brackish water, but not to terrestrial conditions or 75 mmol l−1 NH4Cl, led to a significant increase in the mRNA expression of gdh1a and Gdh amination activity in the intestine. By contrast, all the three experimental conditions had no significant effects on the mRNA expression of gdh1a in the brain of M. albus, despite a significant decrease in the Gdh amination activity in the brain of fish exposed to 75 mmol l−1 NH4Cl for 6 days. Our results indicate for the first time that the mRNA expression of gdh1a was differentially up-regulated in the liver and intestine of M. albus in response to ammonia toxicity and salinity stress, respectively. The increases in mRNA expression of gdh1a and Gdh amination activity would probably lead to an increase in glutamate production in support of increased glutamine synthesis for the purpose of ammonia detoxification or cell volume regulation under these two different environmental conditions.
WOS© Citations 13Scopus© Citations 16 291 202