Please use this identifier to cite or link to this item:
http://hdl.handle.net/10497/24815
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Wong, Willie Han Wah | en |
dc.contributor.author | Tay, Eng Guan | en |
dc.date.accessioned | 2023-01-04T08:40:05Z | - |
dc.date.available | 2023-01-04T08:40:05Z | - |
dc.date.issued | 2021 | - |
dc.identifier.citation | Wong, H., & Tay, E. G. (2021). On optimal orientations of complete tripartite graphs. Australasian Journal of Combinatorics, 80(1), 30–47. https://ajc.maths.uq.edu.au/pdf/80/ajc_v80_p030.pdf | en |
dc.identifier.uri | http://hdl.handle.net/10497/24815 | - |
dc.description.abstract | Given a connected and bridgeless graph <i>G</i>, let <i>D</i>(<i>G</i>) be the family of strong orientations of <i>G</i>. The orientation number of <i>G</i> is defined to be đ(<i>G</i>) := min{<i>d</i>(<i>D</i>) | <i>D</i> ∈ <i>D</i>(<i>G</i>)}, where ,<i>d</i>(<i>D</i>) is the diameter of the digraph <i>D</i>. In this paper, we focus on the orientation number of complete tripartite graphs. We prove a conjecture raised by Rajasekaran and Sampathkumar. Specifically, for q ≥ p ≥ 3, if đ(<i>K</i>(2, <i>p, q</i>)) = 2, then q ≤ (<sup>p</sup><sub>└p/2┘</sub>). We also present some sufficient conditions on <i>p</i> and <i>q</i> for đ(<i>K</i>(<i>p, p, q</i>)) = 2. | en |
dc.language.iso | en | en |
dc.relation.ispartof | Australasian Journal of Combinatorics | en |
dc.title | On optimal orientations of complete tripartite graphs | en |
dc.type | Article | en |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | No file | - |
item.grantfulltext | None | - |
item.languageiso639-1 | en | - |
item.cerifentitytype | Publications | - |
item.openairetype | Article | - |
Appears in Collections: | Journal Articles |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.