Please use this identifier to cite or link to this item: http://hdl.handle.net/10497/24815
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWong, Willie Han Wahen
dc.contributor.authorTay, Eng Guanen
dc.date.accessioned2023-01-04T08:40:05Z-
dc.date.available2023-01-04T08:40:05Z-
dc.date.issued2021-
dc.identifier.citationWong, H., & Tay, E. G. (2021). On optimal orientations of complete tripartite graphs. Australasian Journal of Combinatorics, 80(1), 30–47. https://ajc.maths.uq.edu.au/pdf/80/ajc_v80_p030.pdfen
dc.identifier.urihttp://hdl.handle.net/10497/24815-
dc.description.abstractGiven a connected and bridgeless graph <i>G</i>, let <i>D</i>(<i>G</i>) be the family of strong orientations of <i>G</i>. The orientation number of <i>G</i> is defined to be đ(<i>G</i>) := min{<i>d</i>(<i>D</i>) | <i>D</i> ∈ <i>D</i>(<i>G</i>)}, where ,<i>d</i>(<i>D</i>) is the diameter of the digraph <i>D</i>. In this paper, we focus on the orientation number of complete tripartite graphs. We prove a conjecture raised by Rajasekaran and Sampathkumar. Specifically, for q ≥ p ≥ 3, if đ(<i>K</i>(2, <i>p, q</i>)) = 2, then q ≤ (<sup>p</sup><sub>└p/2┘</sub>). We also present some sufficient conditions on <i>p</i> and <i>q</i> for đ(<i>K</i>(<i>p, p, q</i>)) = 2.en
dc.language.isoenen
dc.relation.ispartofAustralasian Journal of Combinatoricsen
dc.titleOn optimal orientations of complete tripartite graphsen
dc.typeArticleen
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo file-
item.grantfulltextNone-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypeArticle-
Appears in Collections:Journal Articles
Show simple item record

Page view(s)

37
checked on May 31, 2023

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.