Options
Park, Edward
- PublicationOpen AccessSocio-geographical evaluation of ecosystem services in an ecotourism destination: PGIS application in Tram Chim National Park, VietnamEcotourism in national parks of developing countries is increasingly recognised as a promising option to achieve sustainable development goals, regardless, might imply various paradoxical managerial challenges. This paper, therefore, seeks to contribute a methodological framework utilising ES-based social landscape metrics (SLM) to address the potential barriers in managing ecotourism-integrated multi-functional national parks. We present a mixed-method case study in Vietnam's Tram Chim National Park (TCNP), conducted via semi-structural interviews and PGIS with tourists and locals. Multiple key informants, i.e. TCNP's authorities were also interviewed to provide their managerial insights and assist in verifying the PGIS results obtained from the tourists and locals. Via the quantified and mapped SLMs, the study reveals the differences between tourists and locals in terms of how and where they perceive and appreciate the intangible values of TCNP. Through spatial statistics, we reported important spatial correlations (i) between different categories of Ecosystem Services (ES) and (ii) between ES richness and diversity on different TCNP's land covers. As a contribution to the decision-making outlook, we remarked potential areas to expand of ecotourism activities based on the spatial hot and cold spots. This study concludes by highlighting opportunities for future research in expanding on socio-geographical assessments of ES, especially in the fields of ecotourism.
WOS© Citations 22Scopus© Citations 37 108 101 - PublicationOpen AccessInferring floodplain bathymetry using inundation frequencyThis study proposes a new method to retrieve the bathymetry of turbid-water floodplains from the inundation frequency (IF) data derived from over 32 years of composite optical remote sensing data. The new method was tested and validated over the Curuai floodplain in the lower Amazon River, where the entire bathymetry was surveyed in 2004, and water level gauge data has been available since 1960. The depth was estimated based on the relationship derived from IF and surveyed depth data, and the results were compared to those retrieved from bare-Earth DEM. We further assessed the sensitivity of the approach by analyzing the deepest part of the lake (i. e., permanent water body ~ 8m) with high IF, as well as the effect of gradual sedimentation in the lake over time. The results showed that the model is highly accurate and sensitive to IF changes even in the permanent water body areas, suggesting that this model can be used in other seasonal lakes worldwide with turbid-waters, where large-scale bathymetry surveys are not feasible due to high operation costs.
WOS© Citations 7Scopus© Citations 10 289 174 - PublicationEmbargoSevere decline in extent and seasonality of the Mekong Plume after 2000The Mekong plume, which sustains the geomorphology and rich biodiversity along the coastal zone of the Vietnamese Mekong Delta (VMD), has been under intensifying threats from dams, riverbed mining and sea level rise. However, our understanding of how much the intensifying stressors have altered the long-term spatiotemporal dynamics of the plume remains limited. In this paper, we investigate the spatiotemporal dynamics of the Mekong plume over 1988–2022 based on remote sensing, in-situ hydrological data, and continuous wavelet transform. Specifically, we analyze (1) the variability of the long-term average seasonal plume extent, (2) the interannual trends of the seasonal suspended sediment discharge and alongshore drift, and (3) changes in the long-term exposure of coastal mangroves to suspended sediment. Field suspended sediment concentration (SSC) data from five major gauging stations representing the upstream, midstream, and downstream sections of the VMD between 2010–2021 were used to calibrate 101 Landsat surface reflectance observations to estimate SSC. The top-performing algorithm with band combination (NIR SWIR2) * (G / R) was selected for SSC retrieval (R2 = 0.72, SE = 40.6 mg L−1). Our results reveal a 63 % decline in plume extent in the dry season (Dec–May) and an 83 % decline in the wet season (Jun–Nov) between 1988–1999 and 2000–2022. The seasonal variation in suspended sediment discharge (SSD) remained relatively constant until 2014 but significantly weakened thereafter. Despite the decline in the plume, the surface SSC at the alongshore drift began to rise in 2008, marking a reversal in the trend after two decades of descent. The upswing in the surface SSC is associated with rising SSD in the dry season, which we attribute mainly to the release of water from dams upstream of the VMD. However, if the post-2014 decline of wet season SSD persists in the long term, it would deplete sediment deposition around the estuary and starve the alongshore drift. Along the coastline of the Mekong Delta, the annual exposure to suspended sediments declined by 37–54 % between 1988–1999 and 2000–2022, corresponding to a maximum annual mangrove loss of 15 % by coastal erosion. The decrease in plume and coastal exposure is primarily attributed to reduced terrestrial sediment flux, largely influenced by the construction and operation of transnational dams. To restore the Mekong plume, it is imperative to advocate for cross-border governance of dam operations.
33 2 - PublicationMetadata onlyDams in the Mekong: A comprehensive database, spatiotemporal distribution, and hydropower potentials(Copernicus Publications, 2024)
;Ang, Wei Jing; ;Pokhrel, Yadu ;Tran, Dung DucLoc, Ho HuuDams have proliferated along the Mekong, spurred by energy demands from economic development and capital from private companies. Swift dam evolution has rendered many databases outdated, in which mismatches arise from differing compilation methods. Without a comprehensive database, up-to-date spatial assessment of dam growth is unavailable. Looking at future development, hydropower potential specifically within the Mekong remains to be systematically evaluated. In this paper, we offer (1) an open-access and unified database of 1055 dams, (2) a spatiotemporal analysis of dams on a sub-basin and country level from the 1980s to the post-2020s, and (3) a grid-based assessment of the theoretical basin-wide hydropower potential using present-day discharge from the CaMa-Flood model (2011–2015, 0.05°) and future discharge from the WaterGAP2 model used for ISIMIP2b (2021–2040, 0.5°). The dam count of 1055 is more than twice the largest existing database, with 608 hydropower dams generating a boom in hydropower capacity from 1242 MW in the 1980s to 69 199 MW post-2020s. While China had the largest capacity increase from the 2000s to the 2010s (+16 854 MW), Laos has the most planned dams and the highest projected growth post-2020s (+18 223 MW). Based on present-day discharge, we estimate a basin-wide hydropower potential of 1 334 683 MW, where Laos is the highest at 514 887 MW. Based on future discharge modeled with climate change, hydropower potential could grow to over 2 000 000 MW. Laos and China are the highest at around 900 000 MW each, together forming over 80 % of the total potential. Our database facilitates research on dam-induced hydrological and ecological alterations, while spatiotemporal analysis of hydropower capacity could illuminate the complex transboundary electricity trade. Through both spatiotemporal and hydropower potential evaluation, we address the current and future vulnerability of countries to dam construction, highlighting the need for better planning and management in the future hydropower hotspot Laos. The Mekong dam database is publicly available at https://doi.org/10.21979/N9/ACZIJN (Ang et al., 2023).
Scopus© Citations 3 40 - PublicationOpen AccessSource-to-sink sediment fluxes and budget in the Chao Phraya River, Thailand: A multi-scale analysis based on the national datasetIn this paper, we provide a holistic view of the hydro-sedimentological regimes of the Chao Phraya River (CPR) Basin, the fifth largest basin in Southeast Asia. Our analysis of daily discharge and sediment data from 42 major gauge stations showed high seasonal variation in the suspended sediment discharge (Qs), with the maximum discharge occurring in October on an inter-annual average. At Nakhon Sawan, the river discharges 304x104 tons of sediment every year, 60% of which is transported in the peak flooding months (September to November). The peak sediment discharge in October is dramatically attenuated at a station 150 km downstream from Nakhon Sawan, mainly due to discharge diversion to irrigation canals, distributaries, and branches, as well as seasonal flooding over the Central Plain. Sediment yield (SY) calculated at major stations showed spatial variability across the basin, generally decreasing in a downstream direction (i.e. as drainage area increases) (R2 = 0.55). Some stations in the upper basin’s watersheds showed SY as high as >700 tons/km2/yr, which is comparable to upstream catchments of other large rivers with high sediment production. Two significant sediment sinks were identified in this study: the Bhumibol and Sirikit dams (each on Ping and Nan Rivers) – which trap ~236 × 104 tons of sediment each year (~90% trapping rate) – as well as the floodplain of the CPR which stores 176 × 104 tons annually along the 150 km downstream reach from Nakhon Sawan (~60% of Qs at Nakhon Sawan). By extrapolating the floodplain sediment budget, we estimate that around 300 × 104 tons/yr of suspended sediment can be stored downstream of Nakhon Sawan (to the Gulf); comparable to the total annual storage of the two mega dams upstream. Although these dams have been previously reported to cause substantial sediment starvation in the CPR Delta, this study is the first to recognize the important role of lowland storage on the CPR’s basin’s sediment discharge to the Gulf of Thailand, and how it contributes a similar degree of threat to the shrinking delta.
WOS© Citations 16Scopus© Citations 24 146 202 - PublicationMetadata onlyLandscape and social disruption from sand mining and mining-related activities: A case from the Vietnamese Mekong delta
The heavy global demand for sand in various sectors of the economy subjects the Vietnamese Mekong Delta to correspondingly high amounts of sand mining—a process that started in the early 1990s contributing significantly to the Vietnamese economy. The impacts of intensive sand mining and mining-related industries damage the integrity of the river and local communities. Much of the literature focuses on the former, exposing people to the deleterious implications of sand mining on the physical environment. This study aims to fill the gap on the less explored latter through the lenses of place and landscape per human geography tradition, using qualitative methods of thirty-five interviews with locals, video recordings, and sound measurements to highlight the impacts of sand mining and mining-related industries. This study revealed that sand mining and its associated activities are responsible for people’s perceptions of notable air, land, and noise pollution, as well as substantial harm to the urban environment. Over 80 percent of interviewed locals acknowledged the disruptions to their daily lives and a substantial loss of their sense of place. These findings shed light on narratives frequently overlooked by policymakers, emphasizing the urgency of addressing these issues for a sustainable future.
16 - PublicationMetadata onlyIncreased burned area in the Pantanal over the past two decades(Elsevier, 2022)
;Corre, Danielle Blazys ;Enner, Alcantara ;Libonati, Renata ;Massi, Klecia GiliWildfires are behaving differently now compared to other time in history in relation to frequency, intensity and affected ecosystems. In Brazil, unprecedented fires are being experienced in the last decade. Thus, to prevent and minimize similar disasters, we must better understand the natural and human drivers of such extreme events. The Brazilian Pantanal is the largest contiguous wetland in the world and a complex environmental system. In 2020, Pantanal experienced catastrophic wildfires due to the synergy between climate, inadequate fire management strategies and weak environmental regulations. In this study, we analyzed recent patterns and changes in fire behavior across the Pantanal based on land use and cover (LULC) classes. The inter-annual variability of the fire and land cover changes between 2000 and 2021 was assessed using BA from MCD64A1 V.6 product and LULC data from Landsat satellite. Our work reveals that fires in the Pantanal over the last two decades tended to occur more frequently in grassland than in others land cover types, but the 2020 fires have preferentially burned forest regions. Large fire patches are more frequent in forest and grasslands; in contrast, croplands exhibit small patches. The results highlight that a broad scale analysis does not reflect distinct localized patterns, thus stratified and refined studies are required. Our work contributes as a first step to disentangling the role of anthropogenic-related drivers, namely LULC changes, in shaping the fire regime in the Pantanal biome. This is crucial not only to predict future fire activity but also to guide appropriated fire management in the region.WOS© Citations 10Scopus© Citations 21 278 - PublicationMetadata onlyA satellite-based investigation into the algae bloom variability in large water supply urban reservoirs during COVID-19 lockdown(Elsevier, 2021)
;Alcantara, Enner ;Coimbra, Keyla ;Ogashawara, Igor ;Rodrigues, Thanan ;Mantovani, José ;Rotta, Luiz Henrique; Cunha, Davi Gasparini FernandesHere we report the first case study of the significant algae blooming in large reservoirs in relation to the COVID-19 lockdown in Sao Paulo, Brazil. Chlorophyll-a (Chl-a) and phycocyanin (PC) concentrations were estimated for the Guarapiranga and Billings reservoirs, which supply daily water use for over 20 million people and receives treated wastewater. We employed field-calibrated Sentinel 2 MSI and Landsat 8 OLI images to map the spatial patterns of Chl-a and PC over the two periods: before the lockdown (April, August and October 2019) and after the lockdown in São Paulo (April 2020). We found a significant increase in algae pigments (Chl-a and PC) in both reservoirs in April 2020, compared to the same month of 2019. We show that the episodic algae blooming is strongly related to the increased inflows of the residential wastewater from the surrounding watersheds, because the household water use has increased ~3.2% in April 2020, while the runoff into the reservoirs driven by the rainfall was much lower in 2020 compared to the previous year for the same month. In the case of Guarapiranga Reservoir, PC increased nearly 500% in April 2020 compared to April 2019. Given the importance of Billings and Guarapiranga reservoirs for the water supply of the Metropolitan Region of Sao Paulo (MRSP), the abrupt occurrence of cyanobacteria blooms related to the state's lockdown should be considered a major concern for public and environmental health of the region. Although several environmental consequences have been reported due to the COVID-19 worldwide, this study is the first to report the impact of COVID-19 on the trophic state in the tropical reservoirs.WOS© Citations 9Scopus© Citations 13 22 - PublicationOpen AccessThe worst 2020 saline water intrusion disaster of the past century in the Mekong Delta: Impacts, causes, and management implicationsVietnam Mekong Delta (VMD), the country's most important food basket, is constantly threatened by drought-infused salinity intrusion (SI). The SI disaster of 2020 is recognized as the worst in recent decades, hence inspiring this perspective article. The authors' viewpoints on the disaster's impacts and causes are presented. The arguments presented are mainly drawn from (i) up-to-date publications that report on the recent SI intensification in the VMD and (ii) the power spectral analysis results using water level data. We verified the intensifying SI in the VMD both in its frequency and magnitude and remarked on four of the key SI drivers: (i) upstream hydropower dams, (ii) land subsidence, (iii) the relative sea-level rise, and (iv) riverbed sand mining. Also, a non-exhaustive yet list of recommendable management implications to mitigate the negative effects of the SI is contributed. The mitigation measures must be realized at multiple scales, ranging from pursuing transboundary water diplomacy efforts to managing internal pressures via developing early warnings, restricting illegal sand mining activities, alleviating pressures on groundwater resources, and diversifying agriculture.
WOS© Citations 39Scopus© Citations 53 88 419 - PublicationOpen AccessSpatiotemporal changes in mulberry-dyke-fish ponds in the Guangdong-Hong Kong-Macao Greater Bay Area over the past 40 years(MDPI, 2021)
;Zhang, Wenxin ;Cheng, Zihao ;Qiu, Junliang; ;Ran, Lishan ;Xie, XuetongYang, XiankunMulberry-dyke-fish pond ecosystems are a representative traditional eco-agriculture in the Guangdong‒Hong Kong‒Macao Greater Bay Area (GBA). Investigations about the changes in the systems and their relevant water environments under the background of rapid urbanization can provide valuable information to formulate sustainable protection and development strategies. Using the Landsat images obtained after 1986, this study combined supervised classification and visual interpretation approaches, as well as water intensity index and synthesized index to identify the spatial patterns of changes in the ponds in the GBA over the past 40 years. The results indicated that during the period 1986‒2013, the total surface area of the ponds in the GBA increased significantly and peaked in 2013 with a total increase of 84.63%; After that, the total surface area showed a downward trend with a total decrease of approximately 31.34%. The year of 2013 was identified as the milestone of the changes. The results proved that human activities have continuously influenced the spatial distribution and size of fish ponds in the past 40 years. The fish ponds had transformed from near-natural ponds with different sizes and a near-natural random distribution in the early stage into an artificial distribution and an artificial shape. Land use changes, industrial transfer, Government guidance and financial motives were the major drivers to the changes. If no effective measures are taken, this shrinking trend in the ponds will remain in the future.WOS© Citations 6Scopus© Citations 9 72 199